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In [2] Meinardus introduced the notion of invariant approximation.
The theorem of Meinardus was generalized by Subrahmanyam in [6J
and Smoluk in [4]. The object of the present paper is a genralization
of Dotson's fixed point theorem and its application to invariant
approximation. We obtain a theorem which generalizes both of the above­
mentioned results.

1. PRELIMINARIES

If E is a linear space, a subset S of E is said to be star-shaped with
respect to pES if, for each s E S, the line segment [p, s] c S. SeE is said
to be star-shaped if it is star-shaped with respect to one of its elements.
A convex set is obviously star-shaped.

If E is a normed linear space, T: S ~ S is a nonexpansive mapping, if for
any pair x, YES, II T(x) - T(y )11 ~ Ilx - yll. T is said to be a contraction if
there exists a positive number k < 1 such that for any pair x, YES,
II T(x) - T(y)11 ~ k IIx - yll. Thus contractive mappings are nonexpansive
and any nonexpansive map is continuous.

A mapping T: S ~ S is called a Banach operator of type k on S, if there
exists a constant k, O~k<l, such that for XES IIT(x)-T2(x)ll~

k Ilx- T(x)ll·

II. FIXED POINT THEOREMS

In [3] Schauder proved

THEOREM 1. Any continuous map T: S ~ S, where S is a compact and
convex subset of E, has a fixed point.
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Dotson's well-known fixed point theorem (see [1]) is the following

THEOREM 2. If S is a compact and star-shaped subset of a normed linear
space E and T: S ~ S is nonexpansive, then T has a fixed point.

In [5] Subrahmanyam proved a fixed point theorem for Banach
operators:

THEOREM 3. A continuous Banach operator T: S ~ S, where S is a closed
subset of a Banach space, has a fixed point.

Remark. Theorem 3 remains true if S is a closed subset of a normed
linear space and cl(T(S)) is compact.

Using Subrahmanyam's result with the remark we obtain a
generalization of Dotson's theorem.

THEOREM 4. If: S ~ S is nonexpansive, where S is a closed and
star-shaped subset of a normed linear space E, and cl(T(S)) is compact, then
T has a fixed point.

Proof Suppose that a subset S of E is star-shaped with respect to p. Let
us define a sequence of maps Tn'

where k n is a fixed sequence of positive numbers less than 1 and converging
to 1. Each Tn maps S into itself because T: S ~ Sand S is star-shaped with
respect to p. Moreover each Tn is a continuous Banach operator of type k n:

IITn(x)- ~(x)11

= II(l-kn)p +knT(x) - (l-kn) p

- k nT«(1- k n)p +k nT(x))11

=kn IIT(x)- T«l-kn)p+knT(x))11

~kn Ilx-«l-kn)p+knT(x))11

= k n Ilx- Tn(x)ll·

Since cl(T(S)) is compact, cl(Tn(S)) is compact too, and we may apply the
remark: for each Tn there exists a fixed point X n such that X n= Tn(xn) =
(1 - k n) p + k nT(xn). As cl( T(S)) is compact, {T(xn)} has a subsequence
{T(xnJ} converging, e.g., to y; since k nm ~ 1, x nm = (1 - knJ p + k nm T(xnJ
converges to y. By the continuity of T, T(xnJ converges to T(y). But
T(xnJ tends to y by the assumption, thus T(y) = y, and the proof is
complete.



INVARIANT APPROXIMATIONS

III. AN ApPLICATION TO INVARIANT ApPROXIMATIONS
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If E is a normed linear space, M is a subspace of E, and a E E, then
d(a, M) denotes the distance of point a to set M, d(a, M) = inf{II x - a II :
x EM}, and O(a, M) denotes the set of all best approximations of point a in
subspace M, O(a, M) = {x E M: Iia - xii = d(a, M)}.

It is well known that set O(a, M) is closed and convex for any subspace
MofE.

We recall that an operator A: E --+ E is compact, if for any bounded
subset S of E cl(A(S)) is compact.

If an operator A: E --+ E leaves a subspace M of E invariant, then a
restriction of A to M will be denoted by the symbol A I M.

A problem of an approximation theory is existence and uniqueness of
best approximation. A partial solution of an existence problem gives the
following (see [4J)

THEOREM 5. If A: E --+ E is a nonexpansive operator with a fixed point a,
leaving a subspace M of E invariant, and A I M is compact, then the set of
best approximations O(a, M) is nonempty.

Using a fixed point theorem [6, Corollary 2 to Theorem IJ,
Subrahmanyam obtained the following result [6, Corollary 1 to
Theorem 3] which generalizes a theorem of Meinardus:

THEOREM 6. If A: E --+ E is a nonexpansive operator with fixed point a,
leaving a finite-dimensional subspace M of E invariant, then there exists a
best approximation bE O(a, M) which is also a fixed point of A.

In [4] Smoluk proved a theorem close to the above result; namely, the
requirement dealing with the dimension of M is replaced by the assumption
that A is linear and A I M is compact:

THEOREM 7. If A: E --+ E is a nonexpansive linear operator with fixed
point a, leaving subspace M of E invariant, and A I M is compact, then point
a has a best approximation b in M which is also a fixed point ofA.

In [4J a question is asked: is it necessary to assume in the theorem
above that A is a linear operator? The following theorem shows that this
assumption can be abandoned:

THEOREM 8. If A: E --+ E is a nonexpansive operator with fixed point a,
leaving subspace M of E invariant, and A I M is compact, then point a has a
best approximation b in M, which is also a fixed point ofA.

Proof The set O(a, M) is invariant with respect to operator A. Indeed,
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according to Theorem 5 there exists bE O(a, M), i.e., d(a, M) = Iia - bll.
Since A is nonexpansive and a=A(a), we have: d(a, M)= Iia-bil ~
Ila-A(b)ll. So Ila-A(b)11 ~d(a, M) for each bEO(a, M). This means that
A(O(a, M))cO(a, M). Let us put T=A, S=O(a,M). The set Sis closed
and star-shaped since it is convex; since S is a bounded subset of M and
TIM is compact, the set cl(T(S)) is compact. According to Theorem 4 (see
part II) operator T has a fixed point in subset S; i.e., operator A has a fixed
point in the set of best approximations O(a, M), and the proof is complete.
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